No items found.

Contact Us

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form

Request a PiinPoint Demo

Fill out the information below and member of our team will walk you though our Location Intelligence platform and answer any of your questions.

We're committed to your privacy. PiinPoint uses the information you provide to us to contact you about our relevant products, services, news, tips and events. You can unsubscribe from these communications at any time. For more information, check out our Privacy Policy

Conestoga College Students, you can access PiinPoint by visiting: https://app.piinpoint.com/sso/conestoga

Schedule your PiinPoint Demo Now!
Oops! Something went wrong while submitting the form

Take Control of Your Real Estate Strategy.

By submitting this form, you agree to receive promotional messages from PiinPoint about our products and services. You can unsubscribe at any time by clicking on the link at the bottom of our emails.

Thank you

We will be in contact with you soon, or you can click below to book a time right now!
Find a Time to Talk
Oops! Something went wrong with our form.
Please send us an email at Info@PiinPoint.com and we will help you out.

"PiinPoint has become an integral part of my role as Retail Analyst at Cushman & Wakefield Waterloo Region. The platform allows me to put together professional looking reports and provide clients with the insights they need to make real estate decisions.

I honestly don’t know how I would do my job effectively without PiinPoint."

Jessica McCabe, M.Ed.
Retail Analyst

Download PDF

Check your email for your copy of the this report.
Oops! Something went wrong while submitting the form

Mobile Location Data

Using Machine Learning to predict Annual Average Daily Traffic counts

Written by Jacob Lovie, GIS Developer and Sarah Steiner, Chief Product Officer at PiinPoint

Download as a PDF >

PiinPoint Mobile Location Data


PiinPoint’s Location Intelligence platform provides up-to-date mobile location data, helping you learn more about your customers, competition, properties, and community’s movement behaviour. PiinPoint has partnered with SafeGraph, a leading provider of anonymized mobile location data, to draw insights from 45 million mobile devices each month across North America.

One of mobile location data’s greatest applications are in understanding human movement patterns. In commercial real estate, being able to consistently measure movement throughout cities, along walkways, near shopping centers, and beyond provides infinite value for assessing opportunities for leasing and site selection. 

Traffic Counts for all Major Road Segments

PiinPoint combines mobile location data with machine learning to provide an accurate and always up-to-date traffic database for all major road segments across North America, that can easily be used alongside commercial or retail real estate decision making.

  • Directional Traffic Counts
  • Road Segment Visualization
  • Foot Traffic Insights
Learn more about PiinPoint's Mobile Location Data >
Annual Average Daily Traffic Counts

PiinPoint Traffic Counts Methodology

Annual Average Daily Traffic (AADT) counts are used to understand the average number of vehicles that travel on a road segment each day. AADT is often counted by municipalities in order to drive local decision making, and is heavily relied upon by businesses to get insights into traffic patterns of an area. However, because of inconsistent collection methodologies between  municipalities,these studies are not always up-to-date, or available.

Using mobile location data and machine learning, PiinPoint is able to provide accurate predictions of the number of vehicles travelling along a given road segment, as well as the direction of travel, for any road in North America. With a median accuracy of over 81%, PiinPoint’s data instills confidence and offers insights you can trust to make business decisions.

Why PiinPoint has created our own Traffic Count Predictions

Consistent coverage across North America

It’s impossible to make decisions about your business that you can be confident with when you’re relying on outdated dataset or missing key information. AADT are typically commissioned by thousands of different municipalities, each of which may have a different methodology making it impossible to accurately compare the data.

Combining mobile data and machine learning allows PiinPoint to provide consistent coverage across North America, giving peace of mind when comparing traffic counts from region to region and enabling an apples-to-apples comparison regardless of what market you're in. 

Always Up-to-Date

With PiinPoint’s traffic count predictions, you can trust that our AADT counts are always up to date. We analyze our mobile data daily, and push new updates to our platform on a monthly basis. We deliver insights based on historical traffic data for the past 2 years, rather than looking at a single snapshot in time, allowing you to account for seasonality.

Predictions you can Trust

We have gone through rigorous accuracy testing and improvements to be confident that we are providing our clients with accurate AADT estimates across North America. Our accuracy measurements come in at a median accuracy of 81.62% for our AADT predictions. 

Always learning and improving

PiinPoint’s Mobile Traffic Counts are always improving. Our machine learning model is constantly analyzing additional data, as well as being supervised by our team of data scientists and GIS developers to further improve its accuracy. 

AVG Vehicle Volume on Segment
40,602
vehicles per day
21,921
Left-Side of road
19,311
Right-Side of road

How PiinPoint Traffic Counts Work

PiinPoint uses machine learning and mobile data to create a proprietary model that estimates the AADT volumes for any given road segment. Machine learning allows PiinPoint to identify trends and patterns within the data, in order to continually train, test and improve our traffic count predictions. 

Training Data

Mobile Traffic Data

PiinPoint has partnered with SafeGraph, a leading provider of anonymized mobile location data, to draw insights from 45 million mobile devices each month across North America. 

The mobile location data is completely anonymous and represents a sample size of 3-12% of the population. SafeGraph gets the data from over 1,000 iOS and Android apps by asking the user to enable access to their location settings or make use of cookies. 

Using machine learning, PiinPoint is able to extrapolate on the sample of anonymous mobile traffic data to represent 100% of the North American population. PiinPoint takes into account demographics, population statistics, and observation data to ensure accuracy.

Annual Average Daily Traffic (AADT) Data

Testing data for PiinPoint’s prediction accuracy comes from a sample of over 4100 AADT counts along road segments across North America. Covering a variety of road types, locations, geography's and conditions. 

Creating the PiinPoint Traffic Count Prediction Model

The AADT counts are used as a source of truth, and compared against the available mobile data points along the same road segments during the same time period. These road segments are then analyzed to understand variation in the road segment, such as road type, proximity to urban core, and other factors that influence the number of estimated vehicles collected. This allows PiinPoint to understand the variations in the road network and where potential sources of error may occur, as well as do validation testing to measure the accuracy of our estimated vehicle counts compared to the validation AADT data. 

  • Direction of traffic
  • Number of lanes
  • Type of road
  • Density of the urban area
  • Number of occupants in the vehicle
  • Demographics

Data you can count on

PiinPoint calculates accuracy in 2 ways. First, by assessing how closely the predictions match actual AADT counts, and secondly by doing a regression analysis to measure how well the predictions fit the actual AADT counts.

The graph below helps to illustrate how PiinPoint measures our traffic predictions against AADT data. In this scatter plot, PiinPoint was able to achieve an R(2) value of 0.8698, showing that these predictions are highly accurate. The r(2) value is a measurement of error, and the closer to 1 it is, the less error there is in our predictions to the true values. Visually, it is apparent that there are very few outliers within our predictions as well, giving PiinPoint confidence that AADT calculations are highly accurate. 

AADT Predictions

Figure 1. PiinPoint was able to achieve an R(2) value of 0.8698 when calculating the accuracy of traffic count predictions.

Download as a PDF >

Key Takeaways

PiinPoint Provides

1

Traffic counts that you can rely on to make business decisions with confidence

2

Consistent coverage for any major road segment in North America

3

Traffic counts that are always up to date

4

Directional breakdown by left and right side of road

5

Vehicle versus Pedestrian counts

6

A model that is always learning and improving

PiinPoint Pin

Explore PiinPoint Location Intelligence Platform

Request a free demo

Submit your info and we will be in touch to book your live
30-min demo, and get you started on a free 14 day trial!

We're committed to your privacy. PiinPoint uses the information you provide to us to contact you about our relevant products, services, news, tips and events. You can unsubscribe from these communications at any time. For more information, check out our Privacy Policy

Conestoga College Students, you can access PiinPoint by visiting: https://app.piinpoint.com/sso/conestoga

Schedule your PiinPoint Demo Now!
Oops! Something went wrong while submitting the form